Hamiltonian and recursion operator for the reduced Maxwell-Bloch equations

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1983 J. Phys. A: Math. Gen. 161809
(http://iopscience.iop.org/0305-4470/16/8/021)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 129.252.86.83
The article was downloaded on 30/05/2010 at 17:13

Please note that terms and conditions apply.

COMMENT

Hamiltonian and recursion operator for the reduced Maxwell-Bloch equations

Raju N Aiyer
Laser Section, Bhabha Atomic Research Centre, Bombay-400 085, India

Received 26 November 1982

Abstract

The Hamiltonian of the reduced Maxwell-Bloch equations (RMBE), an integrable nonlinear evolution equation, is derived. The recursion operator, its inverse and also the hierarchy of higher-order RMBE are obtained.

The reduced Maxwell-Bloch equations (RMBE) have been derived and discussed in detail by Eilbeck et al (1973) and Bullough et al (1979). They represent the propagation of a short laser pulse in a rarefied medium of two level atoms. The equations are

$$
\begin{align*}
& \sigma_{t}(x, t)=-\int_{-\infty}^{x} v\left(x_{1}, t\right) \mathrm{d} x_{1}, \tag{1}\\
& u_{x}(x, t)=-\mu v(x, t), \quad v_{x}(x, t)=\sigma_{x}(x, t) w(x, t)+\mu u(x, t), \\
& w_{x}(x, t)=-\sigma_{x}(x, t) v(x, t) . \tag{2}
\end{align*}
$$

$\sigma_{x}(x, t)=E(x, t)$ is the electric field. The boundary conditions are

$$
\begin{equation*}
w(x, t) \rightarrow-1 \text { as }|x| \rightarrow \infty, \quad u(x, t), v(x, t) \rightarrow 0 \text { as }|x| \rightarrow \infty . \tag{3}
\end{equation*}
$$

However, the above authors have not found the Hamiltonian for the rmbe. Here we obtain the Hamiltonian and the recursion operator for the RMBE and also generate the higher-order RMBE.

From (2) we get the differential equations

$$
\begin{align*}
& v_{x}+\mathrm{i} w_{x}=-\mathrm{i} \sigma_{x}(v+\mathrm{i} w)-\mu^{2} \int_{-\infty}^{x} v \mathrm{~d} x_{1}, \\
& v_{x}-\mathrm{i} w_{x}=\mathrm{i} \sigma_{x}(v-\mathrm{i} w)-\mu^{2} \int_{-\infty}^{x} v \mathrm{~d} x_{1} . \tag{4}
\end{align*}
$$

We solve these equations using the boundary conditions (3) and we obtain

$$
\begin{gather*}
v(x, t)=-\sin \sigma(x, t)-\mu^{2}\left(\cos \sigma(x, t) \int_{-\infty}^{x} \mathrm{~d} x_{1} \cos \sigma\left(x_{1}, t\right) \int_{-\infty}^{x_{1}} v\left(x_{2}, t\right) \mathrm{d} x_{2}\right. \\
\left.+\sin \sigma(x, t) \int_{-\infty}^{x} \mathrm{~d} x_{1} \sin \sigma\left(x_{1}, t\right) \int_{-\infty}^{x_{1}} v\left(x_{2}, t\right) \mathrm{d} x_{2}\right) . \tag{5}
\end{gather*}
$$

Iterating (5) and substituting in (1) we get

$$
\begin{equation*}
\sigma_{t}(x, t)=\sum_{n=0}^{\infty}(-1)^{n} \mu^{2 n}\left[T_{s}^{-n}(\sigma(x, t))\right]\left(\int_{-\infty}^{x} \sin \sigma\left(x_{2 n+1}, t\right) \mathrm{d} x_{2 n+1}\right), \tag{6}
\end{equation*}
$$

where

$$
\begin{align*}
T_{s}^{-1}(\sigma(x, t))= & \int_{-\infty}^{x} \mathrm{~d} x_{1} \sin \sigma\left(x_{1}, t\right) \int_{-\infty}^{x_{1}} \mathrm{~d} x_{2} \sin \sigma\left(x_{2}, t\right) \\
& +\int_{-\infty}^{x} \mathrm{~d} x_{1} \cos \sigma\left(x_{1}, t\right) \int_{-\infty}^{x_{1}} \mathrm{~d} x_{2} \cos \sigma\left(x_{2}, t\right) \tag{7}
\end{align*}
$$

is the operator which acting on $\int_{-\infty}^{x_{2}} \sin \sigma\left(x_{3}, t\right) \mathrm{d} x_{3}$ successively generates the higher sine-Gordon (sG) equations (Aiyer 1983). Thus the coefficient of $\mu^{2 n}$ on the RHS of (6) is the n th-order SG equation. The Hamiltonian $\bar{H}_{2 n+1}$ of the n th-order sG equation has been derived by Sasaki and Bullough (1981): the first few are
$\bar{H}_{1}=\int_{-\infty}^{\infty}(1-\cos \sigma) \mathrm{d} x$,
$\bar{H}_{3}=\int_{-\infty}^{\infty} \sin \sigma \mathrm{d} x \int_{-\infty}^{x} \cos \sigma \mathrm{~d} x_{1} \int_{-\infty}^{x_{1}} \sin \sigma \mathrm{~d} x_{2}$

$$
\begin{equation*}
+\int_{-\infty}^{\infty} \cos \sigma \mathrm{d} x \int_{-\infty}^{x} \sin \sigma \mathrm{~d} x_{1} \int_{-\infty}^{x_{1}} \sin \sigma \mathrm{~d} x_{2} . \tag{8}
\end{equation*}
$$

The Hamiltonian of the rmbe is therefore

$$
\begin{equation*}
H_{\mathrm{RMB}}=\sum_{n=0}^{\infty}(-1)^{n} \mu^{2 n} \bar{H}_{2 n+1} . \tag{9}
\end{equation*}
$$

2. Recursion operator for RMBE

The akns scattering equation for the rmbe (1) is

$$
\begin{equation*}
\psi_{1 x}+i k \psi_{1}=q \psi_{2}, \quad \psi_{2 x}-i k \psi_{2}=r \psi_{1}, \tag{10}
\end{equation*}
$$

with $q(x, t)=-r(x, t)=\frac{1}{2} \sigma_{x}(x, t)$. This is also the scattering equation for the sG equation

$$
\begin{equation*}
\sigma_{i}(x, t)=\int_{-\infty}^{x} \sin \sigma\left(x_{1}, t\right) \mathrm{d} x_{1} . \tag{11}
\end{equation*}
$$

Therefore the operator (Aiyer 1983)

$$
\begin{equation*}
T_{5}(\sigma)=\partial^{2} / \partial x^{2}+\sigma_{x}(x, t) \int_{-\infty}^{x} \mathrm{~d} x_{1} \sigma_{x_{1}}\left(x_{1}, t\right) \partial / \partial x_{1} \tag{12}
\end{equation*}
$$

and its inverse (7), which are the recursion operators for the sG equation, are also the recursion operators for the RMBE (1). We have verified that (12) is a recursion operator for the rmbe. Now

$$
\begin{equation*}
T_{s}^{-1}(\sigma)\left\{\sigma_{x}\right\}=\int_{-\infty}^{x} \sin \sigma\left(x_{1}, t\right) \mathrm{d} x_{1}, \tag{13}
\end{equation*}
$$

but we want a recursion operator $T_{\text {RMB }}(\sigma)$ for the RMBE such that

$$
\begin{equation*}
T_{\mathrm{RMB}}^{-1}(\sigma)\left\{\sigma_{x}\right\}=-\int_{-\infty}^{x} v\left(x_{1}, t\right) \mathrm{d} x_{1} \tag{14}
\end{equation*}
$$

the RHS of equation (1), so that, in analogy with the sG equation, $T_{\mathrm{RMB}}^{-n}(\sigma)$ acting on σ_{x} will generate the higher-order Rmbe.

From equations (2) and the boundary conditions (3) we have
$v_{x}(x, t)+\sigma_{x}(x, t) \int_{-\infty}^{x} \sigma_{x_{1}}\left(x_{1}, t\right) v\left(x_{1}, t\right) \mathrm{d} x_{1}=-\mu^{2} \int_{-\infty}^{x} v\left(x_{1}, t\right) \mathrm{d} x_{1}-\sigma_{x}(x, t)$,
which can be written as

$$
\begin{equation*}
\left(T_{s}(\sigma)+\mu^{2}\right)\left\{\int_{-\infty}^{x} v\left(x_{1}, t\right) \mathrm{d} x_{1}\right\}=-\sigma_{x}(x, t) \tag{16}
\end{equation*}
$$

Therefore if we define

$$
\begin{equation*}
T_{\mathrm{RMB}}(\sigma)=T_{s}(\sigma)+\mu^{2} \tag{17}
\end{equation*}
$$

which is a recursion operator for RMbe if $T_{s}(\sigma)$ is, we have

$$
\begin{equation*}
T_{\mathrm{RMB}}^{-1}(\sigma)\left\{\sigma_{x}(x, t)\right\}=-\int_{-\infty}^{x} v\left(x_{1}, t\right) \mathrm{d} x_{1} \tag{18}
\end{equation*}
$$

$T_{\mathrm{RMB}}^{-1}(\sigma)$ is easily evaluated as an infinite series using (17):

$$
\begin{align*}
T_{\mathrm{RMB}}^{-1}(\sigma) & =\left[T_{s}(\sigma)\left(1+T_{s}^{-1}(\sigma) \mu^{2}\right)\right]^{-1} \\
& =T_{s}^{-1}(\sigma)-\mu^{2} T_{s}^{-2}(\sigma)+\mu^{4} T_{s}^{-3}(\sigma)-\ldots \tag{19}
\end{align*}
$$

Using (18) and (19) and substituting in equation (1) we obtain (6).
The higher-order RMBE are

$$
\begin{equation*}
\sigma_{t}(x, t)=T_{\mathrm{RMB}}^{-1}(\sigma)\left\{\sigma_{x}(x, t)\right\} \tag{20}
\end{equation*}
$$

and $T_{\mathrm{RMB}}^{-n}(\sigma)$ can be easily evaluated from (17) and the corresponding Hamiltonian written down.

Equations (6), (17) and (19) reduce to the results of the sG equation when $\mu=0$ as they should.

Acknowledgment

I wish to thank Professor R K Bullough for suggesting this problem.

References

Aiyer R N 1983 J. Phys. A: Math. Gen. 16255
Bullough R K, Jack P M, Kitchenside P W and Saunders R 1979 Phys. Scr. 20364
Eilbeck J C, Gibbon J D, Caudrey P J and Bullough R K 1973 J. Phys. A: Math. Nucl. Gen. 61337
Sasaki R and Bullough R K 1981 Proc. R. Soc. 376A 401

