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COMMENT 

Hamiltonian and recursion operator for the reduced 
Maxwell-Bloch equations 

Raju N Aiyer 
Laser Section, Bhabha Atomic Research Centre, B o m b a y 4 0 0  085, India 

Received 26 November 1982 

Abstract. The Hamiltonian of the reduced Maxwell-Bloch equations (RMBE) ,  an 
integrable nonlinear evolution equation, is derived. The recursion operator, its inverse 
and also the hierarchy of higher-order RMBE are obtained. 

The reduced Maxwell-Bloch equations (RMBE) have been derived and discussed in 
detail by Eilbeck et a1 (1973) and Bullough et a1 (1979). They represent the propaga- 
tion of a short laser pulse in a rarefied medium of two level atoms. The equations are 

u,(x, t )  = E(x, t )  is the electric field. The boundary conditions are 

w(x, t ) -*-I  asIxI+oo, u ( x , t ) , u ( x , t ) + O a s ~ x l + o o .  (3) 

However, the above authors have not found the Hamiltonian for the RMBE. Here we 
obtain the Hamiltonian and the recursion operator for the RMBE and also generate the 
higher-order RMBE. 

From (2) we get the differential equations 

2 U, +iw, = - ia , (u  Siw1-p 1-1 U dxl,  

U, -iw, =i(+,(u - i w ) - p  2 

We solve these equations using the boundary conditions (3) and we obtain 

XI 

dxl s ina(x l ,  r )  v(x2, t )  dxl). I, 

(4) 

( 5 )  
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Iterating ( 5 )  and substituting in (1) we get 

ut(x,  t )  = 1 (-1)"pz"[T;" ( a b ,  t))l([' sin U ( X Z ~ + I ,  t )  dx~n+l) ,  

where 

W 

n = O  -m 

T;' (u(x,  t ) )  = 1' dxl sin u ( x 1 ,  t )  1'' dx2 sin u(x2, t )  
J-m J-w 

(7) 

is the operator which acting on j?W sin u(x3, t )  dx3 successively generates the higher 
sine-Gordon ( S G )  equations (Aiyer 1983). Thus the coefficient of w2" on the RHS of 
(6) is the nth-order SG equation. The HamiltoniangZ,,+l of the nth-order SG equation 
has been derived by Sasaki and Bullough (1981): the first few are 

Rl = 

m 

(1 -cos a )  dx, 

X 1  m 

sin u dxl I_, sin u dxZ. 

The Hamiltonian of the RMBE is therefore 
W 

H R M B =  1 ( - 1 ) n ~ z n f 1 2 n + l ,  
n = O  

(9) 

2. Recursion operator for RMBE 

The AKNS scattering equation for the RMBE (1) is 

$1' + ikGi = q$z, 4zX -ik& = r$l, (10) 

with q(x, t )  = - r ( x ,  t )  = $ux(x, t ) .  This is also the scattering equation for the SG equation 

ut(x, t )  = /-:sin u(xI ,  t )  dxl. 

Therefore the operator (Aiyer 1983) 

and its inverse (7), which are the recursion operators for the SG equation, are also 
the recursion operators for the RMBE (1). We have verified that (12) is a recursion 
operator for the RMBE. Now 
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but we want a recursion operator TRMB(cT) for the RMBE such that 

TRLB (r){ax}=-[' -cc u b i ,  t )  dxi, (14) 

the RHS of equation (l), so that, in analogy with the SG equation, T & B  (a) acting on 
ax will generate the higher-order RMBE. 

From equations (2) and the boundary conditions (3) we have 

(15) 2 
U&, t ) + a , ( x ,  t )  

which can be written as 

C T ~ , ( X ~ ,  t)u(xl,  f )  dxl = - r ~  wlI t )  d x l - 4 X ,  t ) ,  1-1 
(16) 

Therefore if we define 

TRMB((+) = rS(a) + CL* (17) 
which is a recursion operator for RMBE if T,(cT) is, we have 

T R A B  (a) is easily evaluated as an infinite series using (17): 

TRL, ((+I = [ ~ , ( a ) ( l  + T;' ( ~ ) c L ~ ) I - '  
= r;' (CT) - p z T ; 2  (CT) +F47-i3 (a) - . , , , 

Using (18) and (19) and substituting in equation (1) we obtain (6). 
The higher-order RMBE are 

t )  = TRLB b ) b x ( x ,  01 (20) 
and T & B  (CT) can be easily evaluated from (17) and the corresponding Hamiltonian 
written down. 

= 0 
as they should. 

Equations (61, (17) and (19) reduce to the results of the SG equation when 
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